

Sondeur multifaisceaux DFF3D + SCX20 (ou SC33)

Comment optimiser les réglages du DFF3D avec un compas satellitaire Furuno SCX20 ou SC33

ETAPE 1 – Référentiel Navire / DFF3D

Référentiel : définir les références

• Profondeur de la quille :

menu Paramètres > Installation :

CARACTÉRISTIQUES NAVIRE			
Longueur du bateau	12,2 m	Tirant d'eau quille	0,9 m

Profondeur de la sonde du DFF3D:
menu Paramètres > Multibeam Sonar > Installation >

Définir la profondeur de la sonde par rapport à la surface

• Sources des données :

menu Paramètres > Installation > source des données

choisir le SCX20 comme source de position , de cap, d' attitude (pitch & roll)

ETAPE 2 – Référence spatiale des capteurs de mouvement

Référencer le plus précisément possible le centre de gravité, le capteur GPS, et le capteur de mouvement. **Ces 3 points de références sont à positionner par rapport à la sonde.**

Voir menu Configuration des capteurs :

menu Paramètres > Multibeam Sonar > Installation > Configuration Sonde

Configuration Sonde		Explication	Exemple	NB	
CONFIGURATION SONDE					
Correction Alignement Transduceur	NON	Mettre sur ON si la sonde a été installée pointant vers l'arrière du navire	ON ou OFF	Si le sonde est montée à l'envers, l'image sonder est inversée : gauche / droite.	
Position Transduceur Av/Arr	0,00 m	Définir la position du centre de gravité du navire par	Valeur positiv Si le centre de	re : gravité est à l'arrière de la sonde	
Position Transduceur Haut/Bas	0,00 m	rapport à la sonde. Si inconnu, considérer le centre de gravité comme sur	Valeur positive : Si le centre de gravité est au-dessus de la sonde		
Position Transduceur Babord/Tribord	0,00 m	la ligne médiane, à 1/3 de l'arrière.	Valeur positive : Si le centre de gravité est à gauche de la sonde		
POS. ANTENNE GPS					
Pos. Antenne GPS Av/Ar	0,00 m		-100 à 100m Positif à l'arrière		
Pos. Antenne GPS Haut/Bas	0,00 m	Définir la position de l'antenne GPS par rapport au transduceur.	-100 à 100m Positif en hauteur		
Pos. Antenne GPS Babord/Tribord	0,00 m		-100 à 100m Positif à		

DFF3D

Exemple de configuration

- TM54 : sonde tableau arrière à tribord
- SCX20 : compas satellitaire

CONFIGURATION SONDE		
Correction Alignement Transduceur	NON	
Position Transduceur Av/Arr	-1,10 m	
Position Transduceur Haut/Bas	-0,30 m	
Position Transduceur Babord/Tribord	0,50 m	••••••
POS. ANTENNE GPS		
Pos. Antenne GPS Av/Ar	-3,10 m	
Pos. Antenne GPS Haut/Bas	4,30 m	••••••
Pos. Antenne GPS Babord/Tribord	0,50 m	••••••
CAPTEUR DE MOUVEMENT		
Sélection Capteur de Mvmt	SC	>
Pos. Capteur de Mvmt Av/Arr	-3,10 m	••••••
Pos. Capteur de Mvmt Haut/Bas	4,30 m	••••••
Pos. Capteur de Mvmt Babord/Tribord	0,50 m	

DFF3D

Exemple de configuration

- TM54 : sonde tableau arrière à tribord
- SCX20 : compas satellitaire

Note:

When the center of gravity is not well known, refer to the following guidance to determine the approx. location of center of gravity.

- 4 1/3 of distance from the stern of the boat (e.g. 3 m from the stern on a 9 m boat)
- 4 1/2 of height between the hull bottom and the top such as a roof
- Keel line (center)

DFF3D

Exemple de configuration

- TimeZero,
- B54 : sonde traversante
- SCX20 : compas satellitaire

sc	Compas sat
TD	Sonde traversante
60	Centre de gravité

Transducer Setup			
Transducer Mis-mount Correction			
Transducer Position Bow/Stem	-9.0 ft		
Transducer Position Up/Down	5.0 tt		
Transducer Position Port/Starboard	3.0 ft		
GPS Sensor Pos			
GPS Sensor Pos. Bow/Stem	-20.0 ft		
GPS Sensor Pos. Up/Down	10.0 ft		
GPS Sensor Pos. Port/Starboard	5.0 ft		
Motion Sensor			
Motion Sensor Source	SC 🔹		
Motion Sensor Position Bow/Stem	-20.0 ft		
Motion Sensor Position Up/Down	10.0 ft		
Motion Sensor Position Port/Starboard	5.0 ft		

SC/(20

ETAPE 3 – Compensation de mouvement

La compensation du mouvement est meilleure avec un SCX20 (ou SC33) qu'avec le capteur interne à la sonde, pour les raisons suivantes :

- compensation pitch / roll / heave
- meilleure précision
- plus grande vitesse de calcul

Choisir le SCX20 comme source de Capteur de Mouvement :

menu Paramètres > Sondeur multifaisceaux > Installation > Configuration sonde

ETAPE 3

Définir les offsets de Pitch & Roll

Pourquoi?

Il est important, pour une meilleure précision de bien définir les offsets de pitch & roll du SCX20

Les données de pitch / roll données par le SCX20 doivent correspondre à l'inclinaison réelle de la sonde

Erreur de 5°		Erreur de 10°	
Profondeur en mètres	Ecart sur le fond	Profondeur en mètres	Ecart sur le fond
5	0,4	5	0,9
20	1,7	20	3,4
50	4,4	50	8,5
100	8,7	100	17,0

Comment ? Le navire doit être à l'arrêt, à l'équilibre, par mer calme. NavNet : afficher les valeurs de Pitch & Roll données par le SCX20 : - valeurs disponibles dans le menu Paramètres > Installation > Sources des données - également disponible dans les NavData SCX20_Pitch_0 = _____ (si 355°, considérer -5°) SCX20_Roll_0 = _____ Sonde : afficher les valeurs de Pitch & Roll données par la sonde: - valeurs disponibles dans le menu Paramètres > Sondeur multifaisceaux > Installation > DFF-3D Monitoring XD_Pitch_0 = _____ XD_Roll_0 = _____

ETAPE 3

Définir les offsets de Pitch & Roll

Voir menu Configuration des capteurs : menu Paramètres > Installation > Réglage capteurs réseau

Offset

HDG

Pitch

Roll

RÉGLAGES CAPTEURS RÉSEAU

Network Sensor Setup allows you to set up Furuno's NMEA2000 sensors (Excludes some sensors). Calibrations/ offsets applied in this menu are applied to the sensor itself. I.e. value after calibration or offset is output from the sensor.

SCX-20

Offset de cap : corriger le cap selon votre procédure habituelle Offset Pitch = XD_Pitch_0 – SCX20_Pitch_0 Offset Roll = XD Roll 0 – SCX20 Roll 0

Résultat : navire immobile, les pitch & roll donnés par le SCX20 (voir NavData) doivent être égaux aux pitch & roll donnés par le capteur interne à la sonde (voir menu sondeur multifaisceaux)

ETAPE 3

Définir les offsets de Pitch & Roll

ETAPE 3

Définir les offsets de Pitch & Roll

Si sur un fond plat, la représentation n'est pas horizontale comme sur l'image ci-dessous, alors régler la vitesse de propagation de l'onde

Voir menu Paramètres > Multibeam Sonar >

Dans cette situation, compenser par une valeur positive

ETAPE 3

Correction offset de Cap

Voir menu Configuration des capteurs : menu Paramètres > Installation > Réglage capteurs réseau

RÉGLAGES CAPTEURS RÉSEAU

Network Sensor Setup allows you to set up Furuno's NMEA2000 sensors (Excludes some sensors). Calibrations/ offsets applied in this menu are applied to the sensor itself. I.e. value after calibration or offset is output from the sensor.

SCX-20

Offset HDG Pitch Roll

Offset de cap : corriger le cap si le SCX20 n'est pas dans l'axe du navire

ETAPE 3

Correction offset de Cap: effet d'une absence de correction

ETAPE 4 - Référence temporelle des capteurs

Définir le délai entre le calcul du mouvement par le capteur SCX20 et l'arrivée au DFF3D

Voir menu Configuration des capteurs :

menu Paramètres > Multibeam Sonar > Installation > Configuration Sonde

Les valeurs par défaut de 20ms ci-contre conviennent pour un SCX20, un SC33, un SC30 en NMEA2000

ETAPE 5 – Fréquence d'envoi des données

Définir la fréquence d'envoi des PGN attitude du SCX20 au DFF3D

Voir menu Configuration des capteurs : menu Paramètres > Installation > Réglage capteurs réseau

RÉGLAGES CAPTEURS RÉSEAU

Network Sensor Setup allows you to set up Furuno's NMEA2000 sensors (Excludes some sensors). Calibrations/ offsets applied in this menu are applied to the sensor itself. I.e. value after calibration or offset is output from the sensor.

```
NAVpilot-300(Processor)...
```

SC-33... ou SCX20

Cliquer sur SCX20, puis aller dans le menu Input/Output, et régler la fréquence d'envoi des

